
The quadrature signal s(t) can be represented as:

s (t )=r ( t )+ jq (t )

where, r(t) is the real part of the signal s(t):
r (t )=A cos (2 π f 1 t+ϕ )+n( t )

and q(t) is the quadrature part:

q ( t )=A sin (2π f 1 t +ϕ )+n
ν

( t )

n(t) is the noise component and n(t )
ν

 is the Hilbert transform of n(t).

With the Fourier analysis method the signal phase is measured using the following 
formula: 

ϕ
es

=tan−1{ 1T ∫0
T

{−r ( t)sin (2π f est )+q ( t )cos (2π f es t )}dt

1
T
∫
0

T

{r (t )cos (2π f es t )+q( t )sin (2π f es t )}dt }
where T is the time over which the phase is measured. For simplicity, we will assume that
the signal is clean (i.e, n(t)) is zero) and fes = f1 (similar results will be obtained when the 
signal is noisy) and the measured phase is given by

ϕ
es

=ϕ

This means that when complex signals are used and the signal is clean, the measured 
phase is exactly equal to the signal phase. 

However, if the signal s(t) is represented by only the real part r(t), then measured phase is
given by, 

ϕ es=tan
−1{1T∫0

T

{−r ( t )sin (2π f es t )}dt

1
T
∫
0

T

{r ( t )cos (2π f es t )}dt }



Therefore, if only real signals are used, even if we assume that the signal is clean (i.e. n(t)
= 0) and our estimate of the signal frequency is exact (i.e. fes = f1), the measured phase has
two error factors and it is given by;

ϕ es=tan
−1{sinϕ+ 1

T
∫
0

T

(sin (4π ft ))dt

cosϕ+ 1
T
∫
0

T

{cos (4 π ft ) }dt }
For the above equation, the two factors α= 1

T
∫
0

T

{sin (4 π ft )}dt  and β= 1
T
∫
0

T

{cos (4π ft )}dt  are the 

source of considerable error. For accurate phase measurement, both α  and β  should be 
zero. This condition can only be guaranteed when the integration time T is a multiple 
integer of 1/f.   Figure (1) shows the error in the measured phase difference versus the 
integration time. It should be noted that these results also applied for the covariance 
processor.

For this plot, two signals are used. The phase of the first signal with respect to the 
reference signal is zero. Two cases are considered for the second signal. For these cases, 
the phases of the second signal with respect to the reference signal are 30o  and 60o  
respectively.

From this plot, it is clear that to measure the phase accurately, the integration should be 
performed over an integer number of cycles. This condition can be guaranteed only when
the signal is clean and the zero crossings of the Doppler signal are well defined. 
However, for noisy environments this task (i.e integration over an integer number of 
cycles) is difficult (if not impossible) to achieve. For these noisy environments, the only 
way to get reasonable phase measurement accuracy (say, error less than 2o ), is for the 
integration time to be greater than 10 cycles. Unfortunately, this limits the range of 
applications as the frequency dynamic range is affected. It should be pointed out that zero
crossing based phase measurement methods suffer from this problem. With these 
methods, phase measurement is performed over an integer number of cycles. Accurate 
phase measurements cannot be attained at SNR less than 10 dB. Under these noisy 
conditions the location of the zero crossings is dominated by noise and not by the signal. 
Consequently, zero crossing methods fail to provide any meaningful results for noisy 
signals. These problems are not encountered when complex signals are used with the 
Fourier analysis method. Thus, for noisy environments, both the Fourier analysis 
method and complex signals must be used     for optimum phase accuracy.
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Fig.(1): signal phase error in degrees vs. measurement 
             time in terms of numberof cycles.
Note: For complex signal, the phase error is zero 
everywhere except when the number of cycles=0
( at this point the phase is undefined).
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