NRC.CNRC

Institute for **Chemical Process** and Environmental Technology

Motivation:

Design Optimization for High Sensitivity Two-Color LII

Gregory J. Smallwood, David R. Snelling, Robert A. Sawchuk, Dan Clavel, and Daniel Gareau

Institute for Chemical Process & Environmental Technology, National Research Council Canada Building M-9, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6

Optical Design for HS-LII-1 (First Generation)

- · maximum practical design for receiver uses 50 mm dia. optics (dichroic mirrors, interference filters, lenses) -this limits the Lagrangian invariant to L = 0.3 mm
- -improvement of 4x over previous 25 mm design use of wider bandwidth and "square" bandpass
- interference filters
- -improvement of $\geq 2x$ over previous design
- · larger receiver aperture
- -integrating sphere spectral radiance calibration enables much larger probe volume diameter -improvement of 80x over previous 1.75 mm dia.
- crossing angle of 15° lengthens probe volume -improvement of 2x over previous 35° design

Other Enhancements for HS-LII-1

- · laser with 4x more energy was implemented, but with 532 nm excitation instead of 1064 nm to potentially perform elastic scattering measurements
- · photomultipliers with a larger active area selected to preserve the Lagrangian invariant
- large diameter laminar flow sample cell

Ambient black carbon levels measured on coast of British Columbia, with photos of CRUISER vehicle and HS-LII-1

Result for HS-LII-1

- first implementation has ~50x greater sensitivity than previous best LII system
- now constrained by noise
- -actual calibration shows more sensitivity -Q-switch noise from laser dominates signal
- data was acquired on the West Coast of Canada, proving the feasibility of ambient real-time black carbon concentration monitoring
- although functional, instrument had poor S/N at lowest concentrations

Enhancements for HS-LII-2 (Second Generation)

- photomultipliers with greater cathode radiant sensitivity low noise PMT/pre-amplifier/differential amplifier circuits
 - -single circuit board with common ground plane -gold alodine Faraday cages for circuits -shielded and grounded cables
- improved interference filter for higher wavelength channel
- laser with 1064 nm excitation
- -avoid unintended pickup of scattered 532 nm radiation
- signal averaging (multipulse operation)
- new sheet formation optics with antireflection coatings. to produce a slightly higher fluence
- -less expansion of the laser beam and lower losses

Comparison of Sensitivity for a Number of AC-LII Systems

System	λ _i (nm)	RCS (W/m³·sr·Volt)	Increase relative to Mobile II	λ ₂ (nm)	RCS (W/m³·sr·Volt)	Increase relative to Mobile II
Mobile II	397	2.54 · 1010	-	782	4.22 · 1010	-
HS-LII-1	445	9.43 · 105	26,900x	746	4.41 · 108	95.7x
HS-LII-2	445	9.14 · 105	27,800x	753	1.36 · 107	3100x
Artium LII-200	402	4.39 · 108	57.9x	782	4.62 · 109	9.13x
Artium ES-LII-200	447	2.20 · 108	115x	829	1.91 · 109	22.1x

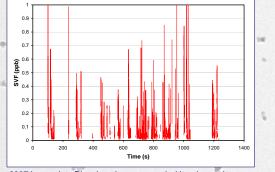
Further Work:

- field evaluation of HS-LII-2 will begin shortly
- · anticipate issues due to high sensitivity
- -pick up of single photon events from room lights -detection of laser flashlamp radiation
- · eventual application to experiments demanding high sensitivity LII

• IPCC National Greenhouse Gas Inventories Programme now focusing on emission estimation of aerosols relevant to climate change

- -there is a need to measure black carbon levels in the atmosphere at microgram per cubic metre or lower mass concentrations
- emission standards for Diesel particulate matter (PM) are being lowered dramatically, resulting in the adoption of Diesel particulate filters (DPFs) by manufacturers
 - -there is a need to measure solid carbon levels in the exhaust and in dilution tunnels at microgram per cubic metre or lower mass concentrations
- · develop high sensitivity LII to measure soot concentration at ambient levels for monitoring emissions from post-2007 Diesel engines, urban air quality, black carbon in atmosphere, and emissions from aircraft at altitude

Goal:


- retain low fluence and two-color pyrometry features of auto-compensating laser induced incandescence (AC-- L ID
- limit for measuring soot concentration with our Mobile II AC-LII system is about 5 ppt (nearly 10 µg/m³)
- target for high sensitivity AC-LII system is a measurement limit of 0.05 ppt (~0.1 µg/m3) or less
- · requires a 100-fold improvement in sensitivity

Approach:

- · Optimize all aspects of the laser-induced incandescence method
 - -laser
 - -beam generation optics
 - -sampling cell
 - -receiver collection optics
 - -receiver filters and dichroics
 - -photodetectors
 - -signal detection and digitization electronics -signal analysis software

Initial Optical Concept:

- maximize signal collection
 - -low f# lenses
 - -high peak transmission interference filters
 - -higher centre wavelength for lower wavelength channel interference filter
 - -wider bandwidth on interference filters
- implemented on enhanced sensitivity Artium ES-LII-200 and on a prototype high sensitivity LII system
- · less than expected improvement

2007 heavy duty Diesel engine measured with enhanced sensitivity LII in dilution tunnel after diesel particulate filter (Artium ES-LII-200). This instrument was able to measure to below 1 ppt, but dropped below the noise limit for much of the cycle (no valid data to report).

Improved Optical Concept:

- optimize laser sheet geometry, probe volume
- 19 dimensions, and collection optics in concert
- use Lagrangian invariant principle to constrain design of collection optics and receiver
 - -preservation of the Lagrangian invariant is essential for a lossless optical system
 - -minimum product of numeric aperture and aperture diameter cannot be improved upon
- $-L = NA_1 \times R_1 = NA_2 \times R_2 = constant$ for optimum design
- probe volume diameter based on maximum practical Lagrangian invariant of receiver optical system
- probe volume depth set by desired laser fluence and maximum available laser energy
- crossing angle minimized, but constrained by practicality

Optical layout of first generation high sensitivity system HS-LII-1