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Single-Tone Parameter Estimation from
Discrete-Time Observations

DAVID C. RIFE, SENIOR MEMBER, IEEE, AND ROBERT R. BOORSTYN, MEMBER, IEEE

Abstract—Estimation of the parameters of a single-frequency complex
tone from a finite number of noisy discrete-time observations is discussed.
The appropriate Cramer-Rao bounds and maximum-likelihood (ML)
estimation algorithms are derived. Some properties of the ML estimators
are proved. The relationship of ML estimation to the discrete Fourier
transform is exploited to obtain practical algorithms, The threshold effect
of one algorithm is analyzed and compared to simulation resuits. Other
simulation results verify other aspects of the analysis.

1. INTRODUCTION

HIS PAPER discusses the problem of estimating the
Tparameters of single-frequency tones from a finite
number of noisy discrete-time observations. The problem
has application to data set testing, telephone transmission
system testing, radar, and other measurement situations.

The parameter estimation problem was formulated by
Slepian [1]. His paper and most subsequent works have
concentrated on the continuous-time observation model.
The cases of discrete-time observations, particularly the one
studied here, have received less attention.

In general the signal has the form %, b; exp [j(w;t +
6)]. In a working system, the imaginary part may be
derived from the real part by a Hilbert transformation or
perhaps not be processed at all. We assume the signal and
noise are band limited.

In this discussion, we will concentrate on the case of a
single tone, in which real and imaginary parts are both
processed; that is, k = 1. An understanding of this case is
fundamental to an understanding of the general case. We
have studied the general case of many tones in addition to
the case presented here [2], and plan to present it in another
paper.

The real part of the signal s(¢) is by cos (wyt + 0;). Sup-
pose some or all of the parameters are unknown. The
computer input will be two sample vectors: X = [ X, X, -,
Xy-1]"and ¥ =[Yo, Y, -+, Yy, ]7, where

X, = s(ty) + W(t,),
Y, =35@)+ W), 0<n<N-—I

b<n<N-—1 (1)
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(3

We assume a constant sampling rate of 1/7" with the first
sample taken at t = t,. Thus

5(t) = by sin (ot + 0p).

4)

W(t) is the Hilbert transform of the noise W(t). We
consider only the case of independent Gaussian noise
samples with zero mean and variance ¢

If we write Z = X + jY¥, then the joint probability
density function (pdf} of the elements of the sample vector
Z when the unknown parameter vector is « is given by

N 1 N—-1 )
) €Xp [__'_i Z (Xn - /“ln)
26° n=o

LY, - v,.)z] 5)

t, =ty + nT = (ny + n)T.

SZ;e) = (0'2127r

where, if w, b, and 0 are all unknown,

a = [wb,6] (6)
i, = bcos(wt, + 0) (7
v, = bsin (wt, + 8). (8)

In developing the topic we will consider three main aspects
of the problem. First, we examine Cramér-Rao (CR) lower
bounds to estimation error. Then we develop and analyze
maximum-likelihood (ML) estimators of the signal param-
eters. Finally, we discuss practical estimation algorithms
and simulation results. The frequency estimation algorithm
has a threshold effect, which we also discuss.

Palmer used the same model in [3]. However, his
approach was different and he obtained different results.
The paper by Gumacos is also related [4].

II. BounDs

In an estimation (or measurement) system, it is important
to have numbers that indicate the best estimation that can
be made with the available data (the observations). The
rms errors are important and are often used as a measure of
system inaccuracy. Estimation bias is of secondary im-
portance, although it is generally desirable to minimize
bias. In this paper, we will find that for our purposes the
bias can usually be neglected. Thus rms errors will be the
important consideration. We will use ML estimation and
will generally be able to keep the bias very small. Thus,
above threshold, the unbiased CR bound will apply. We
will separately evaluate threshold effects.
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The unbiased CR bounds are the diagonal elements of
the inverse of the Fisher information matrix J, whose

typical element is given by
Jij = E{HaiHuj} = —E{Haiaj} (9)

where the expectation is with respect to the sample vector
Z and

H, = 9 log f(Z; ). (10)
Ou;
The bounds are given by
var {&;} > J¥, an

where &, is the estimator of «; and J is the ith diagonal
element of J 1.
When f(Z; &) is given by (5), the elements of J are

J -—iN—l [%%4.%%]
Y 0oy 0oy Doty Qo

6% W0 (12)
The subscripts i and j in (12) should refer to only the
unknown elements in a. For example, if two of the three
elements in « are unknown, then J is a 2-by-2 matrix.
The most general case is of all elements of & unknown.
The matrix J, from (12), is then

1 bo’T % (ng’N + 2noP + Q) 0 by?T(nyN + P)
J== 0 N 0
¢ b2 T(noN + P) 0 bo2N
(13)
where
N—-1
n=0 2
Nt NN - D@2N -1
= 2 = 15
Q n;o 4 6 ( )

and t, = n,T is the time at which the first sample is taken.

J can be obtained from (13) for all combinations of
unknown parameters. If the phase is known, for example,
then J is the 2-by-2 matrix obtained by deleting the third
row and third column from (13).

After inverting all the variations of J, corresponding to
different unknown parameters, one obtains the following
set of bounds:

0.2

bo®T?*(neN + 2noP + Q)’

phase is known and amplitude known
or not (16)
var {®} >
1202

b2 TAN(N? — 1)

s

phase is unknown and amplitude
known or not

17

var {b} > in all cases

2

ag
, 18

N 1%
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and

o? frequency is known and

b,2N’  amplitude known or not

(19)

126%(ng*N + 2n,P + Q)

0} >
var {6} boZNA(NZ — 1)

b

frequency is unknown and amplitude
known or not.

(20)

Line (17) is equivalent to a result obtained by Brennan
[5, eq. (14)] in connection with angular measurement
accuracy of a phased-array radar.

We see that if the phase is known, then the frequency
bound depends upon n,. It is easy to show that if the
sampling times are symmetrically located about zero, i.e.,

_ (N - 1) T

2
then the frequency bound attains its maximum value. This
maximum is the same as the bound when the phase is
unknown. On the other hand, the further in time between
the instant at which the angle is known (where ¢t = 0) and
when the samples are taken, the more accurately the fre-
quency can be estimated. Simulation results, discussed in
Section V, verify this result. In most problems, we do not
expect to know the phase and cannot take advantage of the
preceding property of frequency estimates.

If the frequency is known, the phase bound is independent
of to. If the frequency is not known then the phase bound
depends upon ¢,. The minimum bound is obtained if the
t, is given by (21) and equals the bound when the frequency
is known.

The dependence of bounds upon the time at which the
first sample is taken is inherent in discussions presented in
the well-known texts on the subject, but is generally not
mentioned. See, for example, Van Trees, [6, pp. 273-286]
where the subject is not discussed; and Seidman, [7, pp. 91
and 92] where it is. Seidman indicates that threshold effects
are also a function of ¢, when the signal phase is known.

The CR bounds are almost met by ML estimators when
the SNR is “high.” Thus all of the properties given by
(16)—(20) can be verified by simulations.

@1

t0=

III. MAXIMUM-LIKELIHOOD ESTIMATION

Now let us turn to ML estimation. We will discuss in
detail the case when all three parameters are unknown.
The results for the other cases will be stated without proof.

A. General

The ML estimate of « is the value of «, say a, that
maximizes f(Z; «) when Z is the observed sample vector.
The maximum of f(Z; «) will occur at the maximum of
log (f), or, using (5), at the maximum of

1 N—-1

T A Z (Xn - :un)2 + (Yn - vn)z

L, =
© Nn=1

(22)
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Fig. 1.

where p, and v, were defined earlier. Since 3 X,2 and
S ¥, are constants once an observation has been made,
we can drop them from L, and maximize L:

2 1
L==YXu, +Yy) — - 2D (23
N;(u ) N;w v.h). (23)

After substitution of the definitions of u, and v, into (23),
and some rearrangement, we get

L = 2b Re [exp (—jf) exp (—jowio)d(w)] — b2 (24)

where
N.

-1
Y Z,exp (—jnoT)

{
A(D = -
( ) N S0

(25)
and Re [ -] means real part of [ -].

B. All Parameters Unknown

Now suppose all three of the parameters are unknown
and b, > 0.

It is easy to show that L is maximized over 0, for a fixed
w, if 0 = arg [exp (—jwt,)4(w)], where arg[-] means
the argument or phase of [ -], taken mod 2x for convenience.
Then we obtain

max L = 2b|A(w)] — b2 (26)
[}

Let & be the value of w that maximizes [A(w)|. Then
assuming b > 0,

max L = 2b|A(d)| — b 27
0,0
Finally, the value of b that maximizes (27) is
b = |4®) (28)
which gives
max L = |A(D)|> (29)

8,w,b

The numbers & and b are the ML estimates of w, and b,

wg

w

Maximume-likelihood estimation.

Returning to #, the ML estimate of 8 is
0 = arg [exp (—jdto)4(®)]. (30)

Observe that & and b do not depend explicitly on ¢,, but
6 does. This is to be expected because of the way the CR
bounds depend upon ¢,.

The b and & algorithms for this case (all parameters
unknown) are illustrated in Fig. 1. On the figure, N is 16.

The function A(w) is periodic in o with period w, = 27/T.
Thus the @& algorithm must be used mod w,. Normally the
input signal would be passed through a low-pass filter to
assure that all input frequencies are less than w,.

Relationship to Discrete Fourier Transform: Recall that
the discrete Fourier transform (DFT) of the vector Z is
the set of complex numbers

1Nt ( j2nnk)
Ay = — Z,exp{———}, k=012, N -1
k N ngo P N
(31)
From (31) and the definition of 4(w),
Ak=A(%), k=01,-,N-1 (32)
NT

The dots along the curve on Fig. 1 are the {|4,]} points.
This relationship suggests that coarse (approximate)
estimates of @y, and by, can be made directly from the
DFT of Z as was done by Palmer [3]. A fast Fourier
transform (FFT) renders the calculation of the set {4}
fairly rapidly.

The reader is referred to Bergland [8], Cochran, et al. [9],
and Cooley et al. [10], [11] for discussions of the DFT and
FFT, and to Rife and Vincent [12] for means of extracting
frequency and level estimates from the DFT.

C. Summary of Algorithms

The ML algorithms for all combinations of unknown
parameters can be derived in the manner just described.
The results will be summarized.
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If w, is unknown then @y, maximizes

1) Re [exp (—jbo) exp (—jwto)A(w)],
: if phase is known,
2) |A()l,

If b, is unknown then by is equal to

3) Re [exp (—jbo) exp (—jwoto)A(wo)], -
if frequency and phase are known,

4) Re [exp (—jbo) exp (—jdte)A(D)];
if phase is known but frequency is unknown

if phase is unknown.

5) |A(wo)l, if phase is unknown but frequency is
known, or
6) |A(®)],  if frequency and phase are unknown.

One can show that b given by 3) is normally distributed
with mean Po and variance equal to the CR bound ¢2/N.
Finally, 0y is equal to

7) arg [exp (—jwoto)A(wo)],
or

8) arg [exp (—jdto)A(D)],
In 4), & is from 1). In 6) and 8), & is from 2).

if frequency is known,

if frequency is unknown.

D. Properties of &
The ML estimates of @, have the following properties.

1) The pdf of & is symmetrical about w,, mod w,.
2) var {®} is proportional to w,? and independent of 6.

We will prove these statements for the phase-unknown case.
The proof for the phase-known case is similar. When the
phase is unknown var {®} is also independent of #,, just as
its CR bound is.

Noise Model: The following noise model is convenient.
Let {V,} be a set of independent Rayleigh random variables
with parameter 1. That is

fV (U) {U exp ['_ 2/2.]

v=20
v < 0.

(33)

Let {¢,} be a set of independent random variable uni-
formly distribiited over (—n, ).
We model the Gaussian samples as

W, = oV, cos ¢, (34)
and
W, = oV, sin ¢,. (35)
Proof: Recall that Z, = X, + jY,. Then, using the
noise model,
Z, = by exp [j(nwoT + woty + 0o)] + oV, exp (jon)-

(36)
Thus

Aw) = ;V-exp [/ + woto)]

' Zn: [bO eXp (~Jnﬁ) + O'V” eXp [_J(nﬁ - yn)]]
(37
where

B = (0 — wy)T (38)
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Fig. 2. Relationship of pdf of g to pdf of &.

and
(39

Since the ¢, are independent and uniformly distributed on
(—m,n), in effect so are the p,.

Vo = ¢, — 0 — woto — nwyT.

From (37), |A(w)| is not a function of 8, or 1.

Without loss of generality, let § be the value of B in the
range (—n,7) that maximizes |A(w)|. The ML estimate @,
will then have the value:

b = w, + wSﬁ,
2n

mod w,. (40)

Observe that |4(w)] is an even function of the pair (8,y).
The statistics of —y are the same as the statistics of y. Thus
the statistics of — 8 must be the same as the statistics of j.
Hence the pdf of f must be an even function of B and
E{B} = 0. From (37), the statistics of B do not depend upon
w, or B,, but do depend upon the SNR b,/202.

Discussion: Since we choose & according to (40), the
pdf of B is related to the pdf of @ in the manner illustrated
in Fig. 2. The pdf of & is even about w, except for the part
from 2w, to w,, when w, < w,/2 (or the part from 0 to
2wy = Wy, when w, > y/2).
 Consider the situation when @, < /2. If Pr {20, <
® < o} is small, which it is when the SNR is large enough,
then E{®} =~ w, or & is unbiased. If Pr {2w, < & < w,}
is significant then & is biased in the direction of wy/2. In
other words, E{® — ay} > 0. If wy > w2 the preceding
remarks reply with the obvious modifications. Obsetve
that due to the symmetry of the problem, the bias of ® must
be an odd function of w,, about w,/2.

It is easy to show that if w, is equal to zero, w,/2, or w;,
the pdf of & is even about w,/2. Thus in these three cases

E(®) = w,/2. We see, therefore, that the bias of @ has the
following values
wo E(@ — wg)
0 wsf2
ws/2 0
s —wsf2

Clearly we expect to make large frequency estimation
errors if w, is close to zero or w,. At moderate SNR, say
above the threshold region, we found that large errors did
not occur if the difference between w, and zero (or w,) was
at least four times the rms CR bound.
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The variance of B depends only upon the SNR. Thus the
variance of & is proportional to w,? and is not a function of
0o. The variance of & is a function of w,, but its variation
with @, is small at SNR above the threshold region. Hence
the CR bound for unbiased estimators is appropriate in
this region.

IV. ALGORITHM

We want to discuss threshold effects and simulation
results. Before we do so, however, it is necessary to dwell
upon some practical estimation algorithm details.

As indicated, once an estimate of w, is made, estimates of
by and 6, can be done by straightforward computations,
using appropriate equations. Thus the difficult and time-
consuming part of an algorithm is the part that locates the
maximum of | 4(w)]. This part is essentiaily a search routine.

One way to develop an algorithm is to use a two-part
search routine. The first part calculates |4(w)| for a set of
w values between zero and w,, and identifies the w that
maximizes |A(w)| over this set of w values. The second part
locates the local maximum closest to the value of w picked
out by the first part. We call the first part the coarse search
and the second part the fine search. If the coarse search is
organized properly, this procedure will almost always locate
the global maximum of |4(w)| and thus the ML estimates.

When there is no noise it can be shown that

A(@) = b exp [0 + woto)] exp [—j(N — 1)z] 222
N sin z
(41)
where
Z:w—w0T=n(w—a)0)' (42)
2 Wy
Thus
' in (Nz)
A(w)] = b, |SDED)| 43
| A(w)| ° |N sin (2) (43)

This function is symmetric about w, and has period w;.
The global maximum occurs at w, and has value b,. There
are also numerous low amplitude maxima. Without noise
the ML estimates of w, and b, have no error.

When noise is present [A(w)| loses its clean, symmetrical
shape and the minor maxima get larger. The global max-
imum is usually close to .

If the SNR is small, |A(w)| will occasionally be so badly
distorted that the global maximum occurs at a frequency
far removed from w,. When this happens, the ML fre-
quency estimation algorithm makes a large error. It is the
occurrence of these rare but large errors, which we call
outliers, at low SNR that causes var {®,} to be much larger
than the CR bound.

The Coarse Search: For our coarse search we evaluate
|4(w))| at the set of frequencies {w,} defined by

_ 2k

MT’
when M is 2N, 4N, or 8N. We always choose N to be a
power of 2.

oy k=012-,M--1

(44)
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Observe that the set {4(w,)} is the DFT of the set {Z,}
defined by

Z = {(M/N)Zm n = 051525“'3N - 1

0, n=NN+1-M—1. (43)

The output of the coarse search is the value of w,, say
w;, that corresponds to the largest member of the set
{lA(w 1}

It would seem natural to - use M = N in the coarse
search; that is, to use the DFT of the observed data.
However, it turned out that the w, thus obtained was the
wrong choice (not close to the global maximum) often
enough at low SNR to cause trouble. We found that the
number of wrong choices was significantly reduced when the
coarse search used M/N equal to 2 or 4.

The Fine Search: The fine search algorithm locates the
value of w closest to w, that maximizes |4(w)|. We used the
secant method [13, p. 52] to compute successive approx-
imations to the frequency estimate &. The details are
described in [2].

V. THRESHOLD EFFECT AND SIMULATIONS
A. General

It is well known that nonlinear estimation is generally
plagued by threshold effects. At low SNR, there is usually
a range of SNR in which the mean-squared error (mse)
rises very rapidly as SNR decreases. The SNR at which this
effect is first apparent is called the threshold. Receivers are
often said to operate above or below threshold.

Digital frequency estimation also has threshold effects,
connected with the occurrence of outliers. In this section
we present a calculation of threshold effects. The result
accurately describes one particular model.

Consider the estimation of the frequency of a single
complex tone. Assume the phase is unknown. Suppose the
tone frequency is w, = w,/2. Assume the algorithm is the
one described previously, with M = N.

Since wy = /2, |Ay,;| should be the largest. That is,
the coarse search should give [ = N/2. If [ # N/2 we say
an outlier has occurred.

We will approximate the mse when [/ = N/2 by CR
bound for an unbiased estimator, which we designate

weg?. From (17),

2 36052

T 22pN(N? — 1) (46)

Ocr

where

p = by?/20%. @7

If an outlier occurs, the outcome of the fine search will
be any frequency between zero and w,. The pdf is approx-
imately uniform because the signal has little influence. Thus
we write the mse when an outlier occurs as

2
2 Dy

Woy = . 48
=5 (43)

The total mse is the weighted sum of the two con-
tributions,

mse = (mse/outlier)g + (mse/no outlier)(1 — ¢) (49)



596

where ¢ is the probability of an outlier. Let the total mse
be w,?. Then we have

w 2

12

2
s

(50)

ol % g%+ (- )5 3o

pn?N(N? — 1)

The rms error is

WOrms = \/wez .

(5D

Next we calculate the probability of an outlier ¢ and
verify that when an outlier occurs, all possible / except the
correct one are equally likely.

B.  Probability of an Outlier
Let

C, = |4, k=0to N-1 52)

where A, was defined. When both signal and noise are
present, each C; is a random variable. If the signal frequency
is wy/2 and the noise samples are independent, normal,
and zero mean with variance o2 then it can be shown that
the C, are independent with Rayleigh distribution when
k # N/2 and Rician distribution when k = r = Nj2.
Thus we have

2
fk(Ck)=N_(;"exp (_NCk)’ C, =0, k;éﬂ (53)
o 262 2
and
2 2
7€) =N exp [_ N(C + by )] I, (Nboc,) ,
0-2 20'2 0'2
C, 20 (54)

where I,(-) is the modified Bessel function of the first kind.
Then

1-—g=Pr{allC, <C,)

- f Pr{all G, < C,|C, = x} Pr {C, = x} dx. (55)

X

But
Pr{all G, < C,|C,=x} =[Pr{C, <C,|C, =x}]¥""
(56)
Thus
© x N—-1
l-g= f £ [ f £) dy] dx.  (57)
0 0
But
* *N Ny?
f Sf(y)dy = —;vexp (——yz) dy
o 0 O 20
X2
=1 — exp (— 2) (58)
Thus

@© Nx2 N-1
1l —g= 1 — ex (——)]
1 fo [ P 20'2

N5 o [_ ’M] I, (ﬁﬁ) dx. (59)

o? 2¢? a?
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Fig. 3. Probability of outlier versus SNR.

After some further work, we obtain

_1 & NG
N =2 (N — m)! m!

m—1

q exp (—Np ) . (60)

The given formula for ¢ cannot be easily summed because
the terms N !(—1)"/n — m)!m! get very large and alternate
in sign. Thus to compute ¢ it was necessary to use the

integral form and do numerical integration. The calculated
values of ¢ are shown in Fig. 3.

C. Approximate RMS Frequency Error

We used the preceding formula for o, to compute the
rms error for several values of N as shown in Fig. 4. The
small circles on the curves represent the results of simula-
tions. As can be seen, the simulation results agree with the
calculated curves. The curves are similar to the well-known
results for the continuous observation case (see Van Trees
{6, p. 285]).

One would not usually operate a system at SNR below
the threshold. Thus Fig. 4 is useful mainly because it shows
the SNR at which the threshold effect starts. All SNR above
threshold can be considered to be “high SNR” in the sense
that the variance of ML estimators equals the CR bounds
at high SNR.

The simulations described in the preceding included level
estimates according to 6) (Section III-C). In every case the
rms level errors were almost equal to the CR bounds.
Threshold effects were not observed.
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Fig. 4. Approximate performance of ML frequency estimate of single
complex tone at 2000 Hz, with unknown phase. 1/T is 4000 Hz.
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Fig. 5. Frequency estimation simulation results when phase of single
complex tone is known. SNR is 20 dB. 1/7 is 4000 Hz.

We ran the preceding simulations with M = 4N instead
of M = N. There was no significant difference in the results.
Since using M = 4N is more likely to result in correctly
locating the global maximum in |A(w)|, we are led to believe
that Fig. 4 truly depicts ML estimation when the frequency
is one half the sampling frequency.

The next question is, what about different signal fre-
quencies? We ran the simulation with M = 64, N = 16,
and f, = 2120 Hz, using —10, —5, 0, and 5-dB SNR. The
only point different from the O points is the [J point in
Fig. 4. As before, level estimates did not show a threshold
effect.
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Fig. 6. Phase estimation simulation results when frequency is
unknown. SNR is 20 dB. 1/T is 4000 Hz.

D. Effect of t,

Line (16) tells us that when the phase is known, the
variances of ML frequency estimations at high SNR will
depend upon the time at which the first sample is taken #,.
We have simulated the & algorithm given by 1) (Section
II1I-C). The results, shown in Fig. 5, verify the dependence
on t,.

Equation (20) shows that the variances of ML phase
estimates will depend upon ¢,. This, too, has been simulated,
using the algorithm given by (28) and by 8) (Section
NI-C). The simulation results, shown in Fig. 6, verify the
dependence upon f,.

In a communication environment the phase of an arriving
signal is almost never known. Thus the possibility of
making arbitrarily good frequency estimates, by using
large ¢, (and a perfect clock), is not realizable.

On the other hand, it is very common for both the
frequency and phase of a received signal to be unknown.
Thus adjustment of ¢, to minimize the phase estimation
error is practical. The correct choice for #,, as was mentioned
above, is —[(N — 1)/2]7. This optimum value of #, offers
roughly a four-to-one reduction in the variance of the phase
estimator over the natural choice of 7, = 0.

V1. SUMMARY

This has been an introductory study of the problem of
estimating the frequency and level of a cysoidal (complex
sinusoidal) signal from a finite number of noisy observations
of the signal. We derived the equations that describe the
CR lower bounds to the variance of estimation errors.
Then we derived the ML estimators and showed their
relationship to the DFT. The analysis of the ML estimators
revealed some of their properties. We presented an
algorithm suitable for implementation on a digital computer.
The algorithm almost always yields ML estimates. We
were able to derive an expression for the threshold behavior
of the algorithm. Simulation results verified the analysis.

The results of this paper justify and support the current
use of the DFT for tone parameter estimation. We see, for
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example, that the interpolation algorithms proposed by
Rife and Vincent [12] yield estimates that are close to ML
when the noise samples are independent and Gaussian.
See also Palmer’s recent paper [3].

The general cases of real tones (sinusoidal signals) and of
many tones are, in a sense, extensions of the case studied
here. The presence of several cysoidal signals introduces
complexity in the bounds, ML estimation, and practical
algorithms. These matters have been studied but are not
reported here [2].
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